MATH 102:107, CLASS 20 (MON OCT 23) - RELATED RATES

(1) A circular bacterial colony has radius $r(t)$ and area $A(t)$ (so that $\left.A(t)=\pi(r(t))^{2}\right)$.
(a) Suppose that $r(t)$ grows at a constant rate of 2. Calculate $\frac{d A}{d t}$ when $r=5$.

Solution: The following equation relates the radius and the area.

$$
A=\pi r^{2}
$$

If we take the derivative of both sides with respect to t, we get $A^{\prime}(t)=$ $2 \pi r(t) r^{\prime}(t)$, or written another way,

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

We are told that $\frac{d r}{d t}=2$ and $r=5$. Then $\frac{d A}{d t}=2 \pi(5)(2)=20 \pi$.
(b) Suppose instead that $A(t)$ grows at a constant rate of 20π. Calculate $\frac{d r}{d t}$ when $r=5$.

Solution: We can use the same equation $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$. We are given that $\frac{d A}{d t}=20 \pi$ and $r=5$, and we want to calculate $\frac{d r}{d t}$. Therefore, $20 \pi=2 \pi(5) \frac{d r}{d t}$ which means $\frac{d r}{d t}=2$.

A water trough in the shape of a triangular prism has the dimensions shown (in $d m$). Let $h(t)$ denote the height of the water in the trough at time t, and let $V(t)$ denote the volume of the
 water.
(2) (a) Write an equation relating V and h.

Solution: The volume of water is

$$
\begin{aligned}
V= & \frac{1}{2}(\text { height })(\text { width })(\text { length }) \\
& =\frac{1}{2} h \cdot(\text { width })(14)
\end{aligned}
$$

The width of the water satisfies the equation $\frac{\text { width }}{h}=\frac{3}{6}$, by similar triangles - therefore the volume is $V=\frac{7}{2} h^{2}$.
(b) Water flows out at a constant rate of $2 d m^{3} / \mathrm{s}$. Find $\frac{d h}{d t}$, as a function of h.

Solution: Take the derivative of the boxed equation above to get $\frac{d V}{d t}=7 h \frac{d h}{d t}$. We are given that $\frac{d V}{d t}=-2$, so this means that $\frac{d h}{d t}=-\frac{2}{7 h}$.
(3) A spider hops down from a point at height h on a wall, and starts walking along the ground away from the wall at a constant rate k. A thread of silk connects the point up on the wall to the spider's butt, and as the spider walks, the silk thread gets longer.

Let $l(t)$ denote the length of the thread of silk. Calculate $\frac{d l}{d t}$ when the spider is distance x from the wall.

Solution 1: The relationship between the length of the thread $(l(t))$ and the distance from the wall $(x(t))$ is summed up in the equation

$$
l^{2}=x^{2}+h^{2}
$$

Take the derivative of both sides to get

$$
2 l \frac{d l}{d t}=2 x \frac{d x}{d t}
$$

(h is a constant that does not change with time.) Therefore, $\frac{d l}{d t}=\frac{x}{l} \frac{d x}{d t}=\frac{x}{\sqrt{x^{2}+h^{2}}} \frac{d x}{d t}$. If $\frac{d x}{d t}=k$, then this equals $\frac{k x}{\sqrt{x^{2}+h^{2}}}$.

Solution 2: Isolate l in the equation $l^{2}=x^{2}+h^{2}$ to get $l=\sqrt{x^{2}+h^{2}}$. Take the derivative of both sides with respect to time to get

$$
\frac{d l}{d t}=\frac{1}{2 \sqrt{x^{2}+h^{2}}}\left(2 x \frac{d x}{d t}\right)=\frac{x}{\sqrt{x^{2}+h^{2}}} \frac{d x}{d t}
$$

(remember that h is a constant which does not change with time.) Since $\frac{d x}{d t}=k$, we have $\frac{d l}{d t}=\frac{k x}{\sqrt{x^{2}+h^{2}}}$.
(4) A conical cup with height 10 cm and radius 3 cm is leaking water at a rate of $1 \mathrm{ml} / \mathrm{sec}$. When the water is at height h, calculate $\frac{d h}{d t}$. (The volume of a cone with radius R and height H is $\frac{\pi R^{2} H}{3}$.)

Solution:: Let V be the volume of water in the cup. We are given that $\frac{d V}{d t}=-1$, and we want to calculate $\frac{d h}{d t}$ - therefore, we should find an equation
relating V and h. Let r be the radius of the water in the cup. Then

$$
V=\frac{\pi r^{2} h}{3} \quad \text { and } \quad \frac{r}{h}=\frac{3}{10}
$$

the second equation is by similar triangles. The second equation gives $r=\frac{3}{10} h$, plugging this back into the first equation gives

$$
V=\frac{3 \pi}{100} h^{3}
$$

Taking the derivative gives

$$
\frac{d V}{d t}=\frac{9 \pi}{100} h^{2} \frac{d h}{d t}
$$

We are given that $\frac{d V}{d t}=-1$, and therefore, $\frac{d h}{d t}=-\frac{100}{9 \pi h^{2}}$.

